
SQLServerFast.com
Execution Plan Video Training
Block 1: Understanding execution plans

Level: Advanced

Chapter 3: Order of data in the data stream



Order of data in the data stream

Order of data in the data stream
Often irrelevant

Easier for the query optimizer

More options available

No extra work needed



Order of data in the data stream

Order of data in the data stream
Often irrelevant
Sometimes required

When ORDER BY is used
Data returned to client has to be in correct order



Order of data in the data stream

Order of data in the data stream
Often irrelevant
Sometimes required

When ORDER BY is used

Some operators require sorted input
May be the only operator for a specific task

Segment operator, for OVER clause

Guaranteeing sorted input cannot be avoided in such a case



Order of data in the data stream

Order of data in the data stream
Often irrelevant
Sometimes required

When ORDER BY is used

Some operators require sorted input
May be the only operator for a specific task

Or may have alternatives
Merge Join requires ordered input

Other join operators don’t

Alternatives are typically more expensive

Trade-off versus overhead of sorting the input data

Merge Join only chosen when sorting is “cheap enough”



Order of data in the data stream

Ways to control the order
Use a Sort operator

Must be ordered 

by CustomerID



Order of data in the data stream

Ways to control the order
Use a Sort operator

Must be ordered 

by CustomerID



Order of data in the data stream

Ways to control the order
Use a Sort operator

Must be ordered 

by CustomerID

Must be ordered 

by ProductID

(by CustomerID)



Order of data in the data stream

Ways to control the order
Use a Sort operator

Must be ordered 

by ProductID

(by CustomerID)



Order of data in the data stream

Ways to control the order
Use a Sort operator

Must be ordered 

by ProductID

(by CustomerID)

(by ProductID)

(by ProductID)



Order of data in the data stream

Ways to control the order
Use a Sort operator

Expensive operator

Memory, CPU, potential I/O

Optimizer tries to avoid this!

(by CustomerID)

(by ProductID)

(by ProductID)



How operators interact with order

A typical* operator
Does work when GetNext() is called

1. Call GetNext() of child

2. Do “something” on row received

3. Return the (modified) row

* Not all operators behave like this (but a lot of them do)

row 1
row 2
row 3

row 1 + 2



How operators interact with order

Order-preserving operators
Get a row, do something, return the row
Other operators
Logical ordering of output matches logical ordering of input



How operators interact with order

Order-preserving operators

Order-imposing operators
Forces a specific logical ordering of output, independent of input

Example: Sort

Example: Index Scan
Guarantees output order when Ordered property is true

Output in this case considered ordered (by index columns)

No guarantees when Ordered is false

Output may still be ordered, but not guaranteed

Output in this case considered unordered



How operators interact with order

Order-preserving operators

Order-imposing operators

Other operators
Example: Hash Match (Aggregate)

Logical ordering of output is undetermined
Considered unordered



How operators interact with order

Order-preserving operators

Order-imposing operators

Other operators
Example: Hash Match (Aggregate)
Example: Hash Match (Inner Join)

Usually preserved order of rows from lower input

When out of memory, algorithm changes and order is different
Order-preserving behavior is therefore not guaranteed

Output has to be considered unordered



Order of data in the data stream

Ways to control the order
Use a Sort operator
Benefit from order-preserving and order-imposing operators

Must be ordered 

by CustomerID

Must be ordered 

by ProductID

(by CustomerID)

(by ProductID)

(by ProductID)
Ordered: true

Ordered by

CustomerID

Ordered by 

CustomerID,

SalesOrderID

Ordered by

CustomerID, 

SalesOrderIDOrdered by

ProductID

Ordered: true

Ordered by

ProductID

Ordered by

ProductID

Ordered by

ProductID



Order of data in the data stream

Ways to control the order
Use a Sort operator
Benefit from order-preserving and order-imposing operators

Avoid Sort when possible

(by CustomerID)

(by ProductID)

(by ProductID)
Ordered: true

Ordered: true



Order of data in the data stream

Ways to control the order
Use a Sort operator
Benefit from order-preserving and order-imposing operators

Avoid Sort when possible

Move Sort to location with cheapest rows, smallest rows
Before joining to table with one to many relationship

After filtering rows

When possible, reorder other operators to maximize effect

Use other order-requiring operators is ordering is needed anyway
When needed and possible, maximize effect by reordering operators



Summary

Sorting data
Sort operators: expensive
Other order-imposing operators: often cheaper
Order-preserving operators give freedom where to sort

Sort once, benefit multiple times

Sort where amount of data is low



Next chapters

Chapter 4: Missing nodes
NodeID: Unique number for each operator
Sometimes missing
Can cause unusual effects

Chapter 5: Batch mode versus row mode


	Dia 1: SQLServerFast.com Execution Plan Video Training
	Dia 2: Order of data in the data stream
	Dia 3: Order of data in the data stream
	Dia 4: Order of data in the data stream
	Dia 5: Order of data in the data stream
	Dia 6: Order of data in the data stream
	Dia 7: Order of data in the data stream
	Dia 8: Order of data in the data stream
	Dia 9: Order of data in the data stream
	Dia 10: Order of data in the data stream
	Dia 11: Order of data in the data stream
	Dia 12: How operators interact with order
	Dia 13: How operators interact with order
	Dia 14: How operators interact with order
	Dia 15: How operators interact with order
	Dia 16: How operators interact with order
	Dia 17: Order of data in the data stream
	Dia 18: Order of data in the data stream
	Dia 19: Order of data in the data stream
	Dia 20: Summary
	Dia 21: Next chapters

