
SQLServerFast.com
Execution Plan Video Training
Block 1: Understanding execution plans

Level: Advanced

Chapter 5: Batch mode versus row mode

Row mode execution

Batch mode versus row mode

GetNext()

?

GetNext()



?
GetNext()



Row

RowRow

Row mode execution
Every call and every return is a pass of control

Store current state

Load instructions of called operator in instruction cache

Execute code

Reload instructions of calling operator in instruction cache

Restore saved state

Batch mode versus row mode





Row mode execution

Batch mode versus row mode

GetNext() GetNext()

GetNext()

Row

RowRow

One billion rows

One billion times GetNext()
One billion times “return row”

500 M matches

500 M times GetNext()
500 M times “return row”

Row mode execution
Every call is a pass of control

Store current state

Load instructions of called operator in instruction cache

Execute code

Reload instructions of calling operator in instruction cache

Restore saved state

High number of passes of control affects performance!

Batch mode versus row mode

Batch mode execution

Batch mode versus row mode

GetNext()

?

GetNext()

800 rows400 rows

This is an assumed number,
for purposes of this example

One billion rows, 500 million matches
Row mode: 3 billion passes of control
Batch mode: 5 million passes of control

(Based on an assumed batch size of 800 rows → 1 billion / 800 = 1.25 million batches)

Reduced by a factor 600!

Why not use batches of a million rows each?
Would reduce to just 1000 batches; 4000 passes of control!

Batch mode versus row mode

DiskDiskDisk

Processor

Memory
(buffer pool aka cached data)

good

bad

DiskDiskDisk

Processor

Memory
(buffer pool aka cached data)

good

bad

Level 3 cache (several MB)

CPULv 1 Instr cache
(8-64 Kb)

Lv 1 Data cache
(8-64 Kb)

Level 2 cache (100s Kb)

CPULv 1 Instr cache
(8-64 Kb)

Lv 1 Data cache
(8-64 Kb)

Level 2 cache (100s Kb)

mediocre

good good

greatgreat

superb superb



Optimal level 1 instruction cache usage
Less efficient More efficient





? load reload


? load reload







?


?


…


…
load

Performance effect
Batch mode can be from 2x to over 80x faster than row mode
But there is an overhead

Converting row mode (or columnstore) data to batch “vectors”

Converting batch vectors back to row mode representation

Row mode is still fastest when less data is processed
Batch mode can be (much!) faster for large amounts of data

Batch mode versus row mode

Repacking batches
Filter “marks” non-qualifying rows as deleted; they stay in the batch

(This uses a bit in the “qualifying rows bitmap”)

Why not combine qualifying rows in fewer batches?
Less batches means less passes of control

But: more, and more complex, coding needed

Partial batch must be stored somewhere as new batch is passed in
The new batch fills the level 2 cache

Batch mode versus row mode

Batch-preserving operators
Rows are marked deleted but not actually removed
New columns are stored in pre-allocated space
Actual Number of Batches will not change

Repacking operators
Operator creates new batches
Rows previously marked deleted are actually removed

Batch mode versus row mode

Repacking operators (examples)
Hash Match (Aggregate)

Very high reduction in number of rows

Internal implementation doesn’t allow batch-preserving

Hash Match (various join operations): sometimes
Batch-preserving for one to many relationship

Repacking for many to many relationship
Impossible to predict number of matches for each input row

Batch mode versus row mode

Properties
Estimated Number of Batches
Actual Number of Batches
Estimated Execution Mode

Determined by optimizer

Should the operator run in batch mode or in row mode?

Actual Execution Mode
Set at run time

Did the operator actually execute in batch mode or in row mode?

Normally equal to Estimated Execution Mode
Exception: SQL Server 2012, when a Hash Match operator spillls to tempdb

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited

Limited operators
Columnstore Index Scan

Filter

Compute Scalar

Hash Match
(Inner Join and Aggregate only)

Batch Hash Table Build

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited

Limited operators

Parallel execution plan required

Query needs to reference at least one table with a columnstore index

Limitations often necessitated complex query rewrites
Many simple queries had to be rewritten in more complex form

Bad for maintainability, good for performance

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators
Columnstore Index Scan

Filter

Compute Scalar

Hash Match
(Inner Join and Aggregate only)

Batch Hash Table Build

Concatenation

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators
Columnstore Index Scan

Filter

Compute Scalar

Hash Match
(Inner Join and Aggregate only) (All logical operations)

Batch Hash Table Build

Concatenation

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators
Columnstore Index Scan

Filter

Compute Scalar

Hash Match
(All logical operations)

Batch Hash Table Build

Concatenation

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators
Small changes, but huge effect

Almost all “common” queries use batch mode without rewrite

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators

Support for Hash Match spilling without fallback to row mode

Seamless switching between row mode and batch mode
Does incur overhead, but can be used when appropriate

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved

Limited operators

Support for Hash Match spilling without fallback to row mode

Seamless switching between row mode and batch mode

Parallel execution plan required

Query needs to reference at least one table with a columnstore index

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet

Limited operators
Columnstore Index Scan

Filter

Compute Scalar

Hash Match

Concatenation

Sort

Window Aggregate

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet

Limited operators

Batch mode now also supported in serial execution plans

Improved memory management
Might request additional memory during execution

Reduces spills

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet
SQL Server 2017: extending on the framework

Supported operators
Columnstore Index Scan Filter

Compute Scalar Hash Match

Concatenation Sort

Window Aggregate

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet
SQL Server 2017: extending on the framework

Supported operators
Columnstore Index Scan Filter

Compute Scalar Hash Match

Concatenation Sort

Window Aggregate Adaptive Join

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet
SQL Server 2017: extending on the framework

Supported operators

Memory Grant Feedback
Works in batch mode only

Adjusts memory grant based on previous execution of the same execution plan

Batch mode versus row mode

Restrictions on batch mode
SQL Server 2012: very limited
SQL Server 2014: improved
SQL Server 2016: much better yet
SQL Server 2017: extending on the framework
SQL Server 2019: increasing the reach

Memory Grant Feedback
Works in batch mode only and in row mode

Adjusts memory grant based on previous execution of the same execution plan

Batch mode on rowstore: no columnstore index required

Batch mode versus row mode

Summary

Batch mode versus row mode
Less passes of control by processing many rows at once
Optimal usage of level 2 cache and level 1 instruction cache
Useful for large data sets; too much overhead for smaller sets
Introduced in SQL Server 2012
Improved in every version since

Next chapters

Block 2: Reading data – basic level
Rowstore data

Storage structures

Scan operators

Seek operators

Lookup operators

Special scans

Next chapters

Block 2: Reading data – basic level

Block 2: Reading data – advanced level
Other storage structures

Columnstore indexes

Memory-optimized indexes

Special indexes

Special cases for reading data
Parallelism, batch mode

	Dia 1: SQLServerFast.com Execution Plan Video Training
	Dia 2: Batch mode versus row mode
	Dia 3: Batch mode versus row mode
	Dia 4: Batch mode versus row mode
	Dia 5: Batch mode versus row mode
	Dia 6: Batch mode versus row mode
	Dia 7: Batch mode versus row mode
	Dia 8
	Dia 9
	Dia 10: Optimal level 1 instruction cache usage
	Dia 11: Batch mode versus row mode
	Dia 12: Batch mode versus row mode
	Dia 13: Batch mode versus row mode
	Dia 14: Batch mode versus row mode
	Dia 15: Batch mode versus row mode
	Dia 16: Batch mode versus row mode
	Dia 17: Batch mode versus row mode
	Dia 18: Batch mode versus row mode
	Dia 19: Batch mode versus row mode
	Dia 20: Batch mode versus row mode
	Dia 21: Batch mode versus row mode
	Dia 22: Batch mode versus row mode
	Dia 23: Batch mode versus row mode
	Dia 24: Batch mode versus row mode
	Dia 25: Batch mode versus row mode
	Dia 26: Batch mode versus row mode
	Dia 27: Batch mode versus row mode
	Dia 28: Batch mode versus row mode
	Dia 29: Batch mode versus row mode
	Dia 30: Summary
	Dia 31: Next chapters
	Dia 32: Next chapters

