
SQLServerFast.com
Execution Plan Video Training
Block 2: Reading data

Level: Advanced

Chapter 5: Assorted read optimizations



Read-ahead reads

Read-ahead reads
Implemented in storage engine
Not directly exposed in execution plan

Impacts performance
Usually good

Sometimes not so good

Might influence some run-time statistics in the execution plan plus



Read-ahead reads

Read-ahead reads
Implemented in storage engine
Not directly exposed in execution plan
Only used for physical I/O
Only used when scanning data

Includes Index Seek doing a range seek



Read-ahead reads

Read-ahead reads
Implemented in storage engine
Not directly exposed in execution plan
Only used for physical I/O
Only used when scanning data
Requests needed page and the pages after

Data (hopefully) already in buffer pool when needed

Benefits from large buffer size for I/O requests



Advanced scan

Advanced scan
Also known as “merry-go-round scan” or “piggyback scan”
Enterprise Edition only



Advanced scan

Advanced scan
Normal behavior



Advanced scan

Advanced scan
Merry-go-round scan



Advanced scan

Advanced scan
Also known as “merry-go-round scan” or “piggyback scan”
Enterprise Edition only
New scan connects to scan in progress
Each page read is available for both scans
Original scan disconnects from shared scan when done
Second scan wraps back to start and reads until its own starting point



Advanced scan

Advanced scan
Possible combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan

IAM scan

First query

Se
co

n
d

q
u

er
y



Advanced scan

Advanced scan
Possible combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan NO

IAM scan

First query

Se
co

n
d

q
u

er
y



Advanced scan

Advanced scan
Possible combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan YES YES NO

IAM scan

First query

Se
co

n
d

q
u

er
y



Advanced scan

Advanced scan
Possible combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan YES YES NO

IAM scan YES

First query

Se
co

n
d

q
u

er
y



Advanced scan

Advanced scan
Possible combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan YES YES NO

IAM scan YES * YES * YES

First query

Se
co

n
d

q
u

er
y

* runtime switch to leaf page scan



Advanced scan

Advanced scan
Actually implemented combinations

Ordered = True Leaf page scan IAM scan

Ordered = True NO NO NO

Leaf page scan NO NO NO

IAM scan NO NO YES

First query

Se
co

n
d

q
u

er
y



Advanced scan

Advanced scan
Also known as “merry-go-round scan” or “piggyback scan”
Enterprise Edition only
Only implemented for IAM scans

Second scan connects to first, then wraps around to start

Not limited to two scans: third, fourth, etc. can also connect



Dynamic seek range

Dynamic seek range
Multiple ranges with known values

Optimizer reorders

Optimizer detects and collapses overlapping ranges
Otherwise duplicate rows would be returned!



Dynamic seek range

Dynamic seek range
Multiple ranges with known values
Multiple ranges with variables (unknown values)

Still need to detect and collapse overlapping intervals
Constant Scan + Concatenation to get each interval in a row

Sort operator to sort the intervals in order

Merge Interval operator detects and collapses overlapping intervals



Dynamic seek range

Merge Interval operator
No properties used to control its behavior
Fixed input and output columns

Column 1 and 2: Start and end of interval

Column 3: Bitmap to define boundary behavior

Columns 4 to 6 (input only): Derived from columns 1 to 3
Materialized to facilitate sorting

Not actually needed for operator (but might still be used internally)



Dynamic seek range

Merge Interval operator
Third column unused in Index Seek?

Probably overlooked in conversion from internal plan representation to XML

Does get pushed into Index Seek by the Nested Loops



Partitioning

Partitioned tables or indexes
Implemented as multiple, independent objects
E.g. partitioned clustered index is actually multiple B-trees

Each individual B-tree is called a “partition”

Value in “partitioning column” determines which partition to use



Partitioning

Partitioned tables or indexes
Seek operator

Partition(s) determined by PtnIdnnnn in Seek Predicates property

Scan operator
Partition(s) determined by PtnIdnnnn in Seek Predicates property

This is the only case where a scan operator can have a Seek Predicates property

RangePartionNew() function used to find partition number at runtime



Summary

Read-ahead reading

Advanced scan (aka “merry-go-round scan”)

Dynamic range seeks

Partitioning



Summary

Block 2, basic level
Storage structures

For rowstore data

Scan operators
Seek operators
Lookup operators
Special scans

Block 2, advanced level
Other storage structures

Columnstore

Memory-optimized

Other index types
Parallel and batch mode plans
Other optimizations



Next chapters

Block 3: Combining data – basic level
Logical join types
Physical join operators

Nested Loops

Merge Join

Hash Match

Adaptive Join

Other combining operators



Next chapters

Block 3: Combining data – basic level

Block 3: Combining data – advanced level
More details about the physical join operators

Nested Loops (advanced)

Merge Join (advanced)

Hash Match (advanced)

Adaptive Join (advanced)


	Dia 1: SQLServerFast.com Execution Plan Video Training
	Dia 2: Read-ahead reads
	Dia 3: Read-ahead reads
	Dia 4: Read-ahead reads
	Dia 5: Advanced scan
	Dia 6: Advanced scan
	Dia 7: Advanced scan
	Dia 8: Advanced scan
	Dia 9: Advanced scan
	Dia 10: Advanced scan
	Dia 11: Advanced scan
	Dia 12: Advanced scan
	Dia 13: Advanced scan
	Dia 14: Advanced scan
	Dia 15: Advanced scan
	Dia 16: Dynamic seek range
	Dia 17: Dynamic seek range
	Dia 18: Dynamic seek range
	Dia 19: Dynamic seek range
	Dia 20: Partitioning
	Dia 21: Partitioning
	Dia 22: Summary
	Dia 23: Summary
	Dia 24: Next chapters
	Dia 25: Next chapters

