
SQLServerFast.com
Execution Plan Video Training
Block 3: Combining data

Level: Advanced

Chapter 3: Hash Match (advanced)

Hash Match

Hash Match
Build phase
Probe phase

Hash Match

Hash Match
Build phase

Hash Match (inner join, no spills)

Hash Match
Build phase Probe phase

Hash Match (inner to left outer)

From inner join to left outer join
Add unmatched left rows

These are from the build input

Can be found in the hash table
But which of these rows to return?

Use a Boolean to track when there are matches

Hash Match (inner to left outer)

From inner join to left outer join
Add unmatched left rows

These are from the build input

Can be found in the hash table
But which of these rows to return?

Use a Boolean for each row in the hash table to track when there are matches

Hash Match (inner to left outer)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket

Hash Match (left outer join, no spill)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket
(mark as unmatched)

Match
found?

Hash Match (inner to left outer)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner to left outer)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)

Match
found?

Hash Match (left outer join, no spills)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Run final phase
Remove hash table

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)

Hash Match (left outer join, no spills)

Final phase (officially part of the probe phase)

End of
data?

Marked as
matched?

No

Yes

No

Yes

Return build data
(with NULL in probe columns)

Read row from
hash table

Remove hash table

Match
found?

Hash Match (inner join, no spills)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner to right outer)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner to right outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Probe row
matched?

Match
found?

Hash Match (inner to right outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

No

Yes

Probe row
matched?

Match
found?

Hash Match (right outer join, no spills)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

No

Yes

Return probe data
(with NULL in build columns)

Probe row
matched?

Match
found?

Hash Match (right outer to full outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

No

Yes

Return probe data
(with NULL in build columns)

Probe row
matched?

Match
found?

Hash Match (right outer to full outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

No

Yes

Return probe data
(with NULL in build columns)

Update row in bucket
(mark as matched)

Probe: Close()
Run final phase
Remove hash table

Probe row
matched?

Match
found?

Hash Match (full outer join, no spills)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

No

Yes

Return probe data
(with NULL in build columns)

Update row in bucket
(mark as matched)

Hash Match (full outer join, no spills)

Typical output order (when there are no spills!)
All probe rows, matched and unmatched, in original order
All unmatched build rows, in “semi random” order

This order is not guaranteed
But you should still be aware of it, in case it matters

Hash Match (inner to left semi)

From inner join to left semi join
Only return matched build rows
Return matched build rows once, regardless of number of matches
Two options

Return when first match found
Mark as matched

Skip on next match

Mark as matched when any match found
Return matched rows in final phase

Hash Match (left semi join, no spills)

From inner join to left semi join
Only return matched build rows
Return matched build rows once, regardless of number of matches
Marks as matched during probe phase
Returns matched rows during final phase
Operator is now fully blocking

No data returned during build phase

No data returned during probe phase

All data returned during final phase

Match
found?

Hash Match (left outer to left semi)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)

Probe: Close()
Run final phase
Remove hash table

Match
found?

Hash Match (left semi join, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)

Probe: Close()
Run final phase
Remove hash table

Marked as
matched?

Hash Match (left semi join, no spills)

Final phase

End of
data?

No

Yes

No

Yes

Read row from
hash table

Remove hash table

Return build data

Match
found?

Hash Match (left anti semi join, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)

Probe: Close()
Run final phase
Remove hash table

Hash Match (left anti semi join, no spills)

Final phase

End of
data?

Marked as
matched?

No

Yes

No

Yes

Return build data

Read row from
hash table

Remove hash table

Hash Match (probed left semi join)

Probed left semi join
Not supported

Not clear why

Would be relatively easy to build

Never encountered, never been able to repro

Match
found?

Hash Match (inner to right semi)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner to right semi)

Probe phase

Return probe data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (right semi join, no spills)

Probe phase

Return probe data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (right semi to right anti semi)

Probe phase

Return probe data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (right semi to right anti semi)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (right anti semi join, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Return probe data

Probe row
matched?

Match
found?

Hash Match (right anti semi join, no spills)

Probe phase (alternative version)
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Return probe data

No

Yes

(mark probe as matched)

Hash Match (union)

Union
Merge Join (Union)

Both inputs have to be free of duplicates already

Avoids new duplicates after combining the two inputs

Hash Match (Union)
Probe input has to be free of duplicates already

Duplicates in build input are removed by the operator

Avoids new duplicates after combining the two inputs

Match
found?

Hash Match (inner join to union)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner join to union)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (inner join to union)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Match
found?

Hash Match (union, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Return probe data

Probe row
matched?

Match
found?

Hash Match (union, no spills)

Probe phase (alternative version)
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Return probe data

(mark probe as matched)

No

Yes

Probe: Close()
Run final phase
Remove hash table

Match
found?

Hash Match (union, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

Return probe data

Marked as
matched?

Hash Match (union, no spills)

Final phase

End of
data?

No

Yes

No

Yes

Read row from
hash table

Remove hash table

Return build data

Return build data

Hash Match (union, no spills)

Final phase

End of
data?

No

YesRead row from
hash table

Remove hash table

Return build data

Duplicates
in bucket?

Hash Match (union, no spills)

Final phase (bad alternative, not used!!!)

End of
data?

No

Yes

First

Not first

Read row from
hash table

Remove hash table

Return build data

Hash Match (inner to union)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket

Match
found?

Hash Match (inner to union)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket

No

Yes

Hash Match (union, no spills)

Final phase

End of
data?

No

YesRead row from
hash table

Remove hash table

Return build data

Match
found?

Hash Match (union, no spills)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket

No

Yes

Match
found?

Hash Match (union, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

Return probe data

Probe: Close()
Run final phase
Remove hash table

Add row to bucket
(mark as unmatched)

Match
found?

Hash Match (all operations, no spills)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #

No

Yes

Union

All

joins

Probe: Close()
Run final phase
Remove hash table

Probe row
matched?

Match
found?

Hash Match (all operations, no spills)

Probe phase

Handle matched data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

No

Yes

Handle unmatched probe

Update row in bucket
(mark as matched)

Marked as
matched?

Hash Match (all operations, no spills)

Final phase

End of
data?

No

Yes

No

Yes

Read row from
hash table

Remove hash table

Handle matched build

Handle unmatched build

Hash Match

Memory
Hash table stored in memory
Memory Grant

Determined by optimizer

Based on estimates

May be adjusted for later executions by Memory Grant Feedback
Since SQL Server 2017 for batch mode

Since SQL Server 2019 for row mode

No additional memory allocations once query runs
(there are some rare exceptions to this in batch mode plans only)

Hash Match

Memory
Hash table stored in memory
Memory Grant
What if the build input is larger than the available memory?

Fail with run-time error

Different version of algorithm
Still returns correct results

Performance suffers

Hash Match

Memory
Hash table stored in memory
Memory Grant
What if the build input is larger than the available memory?

 Fail with run-time error

Different version of algorithm
Still returns correct results

Performance suffers

Uses tempdb to store data that doesn’t fit in memory
This data is then read back and processed later

Called “spilling” to tempdb

Indicated in execution plan plus run-time statistics

Hash Match

Memory
Hash table stored in memory
Memory Grant
What if the build input is larger than the available memory?

 Fail with run-time error

Different version of algorithm
Still returns correct results

Performance suffers

Uses tempdb to store data that doesn’t fit in memory
This data is then read back and processed later

Called “spilling” to tempdb

Indicated in execution plan plus run-time statistics, Extended Events, and SQL Trace

Hash Match

Hash spill in detail
Can only occur during the build phase

Build row read, but no memory available to store it
Algorithm changes from “in-memory hash join” to “dynamic hash join” or “grace hash join”

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Hash table divided into several partitions
Partition number determined by hashing the bucket number

One “active” partition remains in memory
(For grace hash join, zero partitions remain in memory)

All inactive partitions spill to tempdb
Data already in hash table moved to “files” in tempdb

Rest of build phase stores data in memory or in appropriate file

End of build phase: active partition in memory, rest in files

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Build phase: Active partition in memory, inactive partitions in tempdb files

Probe phase:
Rows in active partition can be regularly processed

Rows in inactive partitions stored in yet more tempdb files

This finds matches and non-matches for active partition only
Execute final phase (if needed) to complete final results for active partition

No results at all for inactive partitions

But build and probe data for these partitions is now in separate files in tempdb

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Build phase: Active partition in memory, inactive partitions in tempdb files

Probe phase: Results for active partition, inactive partitions in tempdb files

Process inactive partitions
Make active

Read build file, store data in hash table

Read probe file, handle matches and non-matches as they are found

Execute final phase (if needed)

Repeat for each inactive partition

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Multiple iterations of build, probe, and final phase

First iteration
Reads build input, stores in memory or in tempdb

Reads probe input, produces partial results or stores in tempdb

Later iterations
Reads build data from tempdb, stores in memory

Reads probe data from tempdb, produces partial results

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join

Initial partitions too large

Partitions are split into new, smaller partitions

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out

When recursive hash join fails

Merge Join or Nested Loops for only those partition(s)
Input from files in tempdb

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out
Bit-vector filtering

Probe rows that match empty bucket are handled immediately

This reduces size of probe files for inactive partitions

Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out
Bit-vector filtering
Dynamic role reversal

Partitions that start inactive

Reverse build and probe if probe file has less rows

Hash Match

Hash spill
Data split into multiple partitions
Data for partitions written to tempdb
Partitions processed one by one

Output
Start with first partition

(may be mixed with some unmatched probe rows)

Then second partition, etc
Effectively (semi) random

Hash Match

Multiple Hash Match operators in a single execution plan
Reusing memory
Hash teams

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %28 %72 %31 %

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %28 %72 %31 %57 %

12 % 28 %

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %28 %72 %31 %57 %

12 % 28 %

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %28 %72 %31 %57 %

12 % 28 %

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Memory Fractions Input

Memory Fractions Output

Hash Match

Multiple memory using operators in a single execution plan
Reusing memory
Hash teams

Directly adjacent Hash match operators

Using the same hash keys

Team manager
Mapping of values to buckets

Mapping of buckets to partitions

Memory management

Decisions to spill
Entire team spills at once

Summary

Hash Match (advanced)
Logic for all supported join types
Hash spills

Effect on order

Memory fractions
Hash teams

Next chapters
Chapter 4: Adaptive Join (advanced)

Logic for all supported join types

Spills
Considerations for choosing Adaptive Join

	Dia 1: SQLServerFast.com Execution Plan Video Training
	Dia 2: Hash Match
	Dia 3: Hash Match
	Dia 4: Hash Match (inner join, no spills)
	Dia 5: Hash Match (inner to left outer)
	Dia 6: Hash Match (inner to left outer)
	Dia 7: Hash Match (inner to left outer)
	Dia 8: Hash Match (left outer join, no spill)
	Dia 9: Hash Match (inner to left outer)
	Dia 10: Hash Match (inner to left outer)
	Dia 11: Hash Match (left outer join, no spills)
	Dia 12: Hash Match (left outer join, no spills)
	Dia 13: Hash Match (inner join, no spills)
	Dia 14: Hash Match (inner to right outer)
	Dia 15: Hash Match (inner to right outer)
	Dia 16: Hash Match (inner to right outer)
	Dia 17: Hash Match (right outer join, no spills)
	Dia 18: Hash Match (right outer to full outer)
	Dia 19: Hash Match (right outer to full outer)
	Dia 20: Hash Match (full outer join, no spills)
	Dia 21: Hash Match (full outer join, no spills)
	Dia 22: Hash Match (inner to left semi)
	Dia 23: Hash Match (left semi join, no spills)
	Dia 24: Hash Match (left outer to left semi)
	Dia 25: Hash Match (left semi join, no spills)
	Dia 26: Hash Match (left semi join, no spills)
	Dia 27: Hash Match (left anti semi join, no spills)
	Dia 28: Hash Match (left anti semi join, no spills)
	Dia 29: Hash Match (probed left semi join)
	Dia 30: Hash Match (inner to right semi)
	Dia 31: Hash Match (inner to right semi)
	Dia 32: Hash Match (right semi join, no spills)
	Dia 33: Hash Match (right semi to right anti semi)
	Dia 34: Hash Match (right semi to right anti semi)
	Dia 35: Hash Match (right anti semi join, no spills)
	Dia 36: Hash Match (right anti semi join, no spills)
	Dia 37: Hash Match (union)
	Dia 38: Hash Match (inner join to union)
	Dia 39: Hash Match (inner join to union)
	Dia 40: Hash Match (inner join to union)
	Dia 41: Hash Match (union, no spills)
	Dia 42: Hash Match (union, no spills)
	Dia 43: Hash Match (union, no spills)
	Dia 44: Hash Match (union, no spills)
	Dia 45: Hash Match (union, no spills)
	Dia 46: Hash Match (union, no spills)
	Dia 47: Hash Match (inner to union)
	Dia 48: Hash Match (inner to union)
	Dia 49: Hash Match (union, no spills)
	Dia 50: Hash Match (union, no spills)
	Dia 51: Hash Match (union, no spills)
	Dia 52: Hash Match (all operations, no spills)
	Dia 53: Hash Match (all operations, no spills)
	Dia 54: Hash Match (all operations, no spills)
	Dia 55: Hash Match
	Dia 56: Hash Match
	Dia 57: Hash Match
	Dia 58: Hash Match
	Dia 59: Hash Match
	Dia 60: Hash Match
	Dia 61: Hash Match
	Dia 62: Hash Match
	Dia 63: Hash Match
	Dia 64: Hash Match
	Dia 65: Hash Match
	Dia 66: Hash Match
	Dia 67: Hash Match
	Dia 68: Hash Match
	Dia 69: Hash Match
	Dia 70: Hash Match
	Dia 71: Hash Match
	Dia 72: Hash Match
	Dia 73: Hash Match
	Dia 74: Hash Match
	Dia 75: Hash Match
	Dia 76: Hash Match
	Dia 77: Hash Match
	Dia 78: Hash Match
	Dia 79: Hash Match
	Dia 80: Hash Match
	Dia 81: Hash Match
	Dia 82: Hash Match
	Dia 83: Hash Match
	Dia 84: Hash Match
	Dia 85: Hash Match
	Dia 86: Summary
	Dia 87: Next chapters

