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Chapter 3: Hash Match (advanced)
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Hash Match (inner to left outer)

From inner join to left outer join
Add unmatched left rows

These are from the build input

Can be found in the hash table
But which of these rows to return?

Use a Boolean for each row in the hash table to track when there are matches



Hash Match (inner to left outer)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #Add row to bucket



Hash Match (left outer join, no spill)
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Compute bucket #Add row to bucket
(mark as unmatched)
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Match 
found?

Hash Match (left outer join, no spills)

Probe phase

Return combined data

End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Run final phase
Remove hash table

Compute bucket #

Search bucket

YesNo Update row in bucket
(mark as matched)



Hash Match (left outer join, no spills)

Final phase (officially part of the probe phase)

End of
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Marked as 
matched?

No

Yes

No

Yes

Return build data
(with NULL in probe columns)

Read row from 
hash table

Remove hash table
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Match 
found?

Hash Match (inner to right outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)
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No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo
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Probe row 
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Match 
found?

Hash Match (right outer join, no spills)

Probe phase

Return combined data
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No

Yes Probe: Close()
Remove hash table
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Search bucket

YesNo

No

Yes

Return probe data
(with NULL in build columns)



Probe row 
matched?

Match 
found?

Hash Match (right outer to full outer)

Probe phase

Return combined data
(mark probe as matched)

End of
data?
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(mark as unmatched)

Probe: Init()

No

Yes Probe: Close()
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YesNo
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Yes

Return probe data
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Probe row 
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Probe phase
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Probe: Close()
Run final phase
Remove hash table

Probe row 
matched?

Match 
found?

Hash Match (full outer join, no spills)

Probe phase

Return combined data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

No

Yes

Return probe data
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Update row in bucket
(mark as matched)



Hash Match (full outer join, no spills)

Typical output order (when there are no spills!)
All probe rows, matched and unmatched, in original order
All unmatched build rows, in “semi random” order

This order is not guaranteed
But you should still be aware of it, in case it matters



Hash Match (inner to left semi)

From inner join to left semi join
Only return matched build rows
Return matched build rows once, regardless of number of matches
Two options

Return when first match found
Mark as matched

Skip on next match

Mark as matched when any match found
Return matched rows in final phase



Hash Match (left semi join, no spills)

From inner join to left semi join
Only return matched build rows
Return matched build rows once, regardless of number of matches
Marks as matched during probe phase
Returns matched rows during final phase
Operator is now fully blocking

No data returned during build phase

No data returned during probe phase

All data returned during final phase
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found?

Hash Match (left outer to left semi)
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Hash Match (left semi join, no spills)
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Match 
found?

Hash Match (left anti semi join, no spills)
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Hash Match (left anti semi join, no spills)

Final phase

End of
data?

Marked as 
matched?

No

Yes
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Yes
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Remove hash table



Hash Match (probed left semi join)

Probed left semi join
Not supported

Not clear why

Would be relatively easy to build

Never encountered, never been able to repro
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found?

Hash Match (inner to right semi)

Probe phase
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found?

Hash Match (right semi to right anti semi)
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Match 
found?

Hash Match (right anti semi join, no spills)

Probe phase
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
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Search bucket

YesNo
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Probe row 
matched?

Match 
found?

Hash Match (right anti semi join, no spills)

Probe phase (alternative version)
End of
data?

Probe: GetNext()Probe: Init()

No

Yes Probe: Close()
Remove hash table

Compute bucket #

Search bucket

YesNo

Return probe data

No

Yes

(mark probe as matched)



Hash Match (union)

Union
Merge Join (Union)

Both inputs have to be free of duplicates already

Avoids new duplicates after combining the two inputs

Hash Match (Union)
Probe input has to be free of duplicates already

Duplicates in build input are removed by the operator

Avoids new duplicates after combining the two inputs



Match 
found?

Hash Match (inner join to union)

Probe phase
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Search bucket

YesNo
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Match 
found?

Hash Match (inner join to union)

Probe phase
End of
data?
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No
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Search bucket

YesNo



Match 
found?

Hash Match (union, no spills)

Probe phase
End of
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No

Yes Probe: Close()
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Compute bucket #

Search bucket

YesNo

Return probe data



Probe row 
matched?

Match 
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Probe: Close()
Run final phase
Remove hash table

Match 
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matched?

Hash Match (union, no spills)
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Return build data

Return build data



Hash Match (union, no spills)

Final phase
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Remove hash table

Return build data



Duplicates 
in bucket?

Hash Match (union, no spills)

Final phase (bad alternative, not used!!!)

End of
data?

No

Yes
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Not first

Read row from 
hash table

Remove hash table

Return build data



Hash Match (inner to union)

Build phase
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Compute bucket #Add row to bucket
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Yes



Hash Match (union, no spills)

Final phase
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Remove hash table

Return build data
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Hash Match (union, no spills)
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Match 
found?

Hash Match (union, no spills)

Probe phase
End of
data?
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Yes

Compute bucket #
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YesNo

Return probe data

Probe: Close()
Run final phase
Remove hash table



Add row to bucket
(mark as unmatched)

Match 
found?

Hash Match (all operations, no spills)

Build phase

Build: GetNext() End of
data?

Build: Init()

No

Yes
Build: Close()

Compute bucket #

No

Yes

Union

All 

joins



Probe: Close()
Run final phase
Remove hash table

Probe row 
matched?

Match 
found?

Hash Match (all operations, no spills)

Probe phase

Handle matched data
(mark probe as matched)

End of
data?

Probe: GetNext()
(mark as unmatched)

Probe: Init()

No

Yes

Compute bucket #

Search bucket

YesNo

No

Yes

Handle unmatched probe

Update row in bucket
(mark as matched)



Marked as 
matched?

Hash Match (all operations, no spills)

Final phase

End of
data?

No

Yes

No

Yes

Read row from 
hash table

Remove hash table

Handle matched build

Handle unmatched build



Hash Match

Memory
Hash table stored in memory
Memory Grant

Determined by optimizer

Based on estimates

May be adjusted for later executions by Memory Grant Feedback
Since SQL Server 2017 for batch mode

Since SQL Server 2019 for row mode

No additional memory allocations once query runs
(there are some rare exceptions to this in batch mode plans only)



Hash Match

Memory
Hash table stored in memory
Memory Grant
What if the build input is larger than the available memory?

Fail with run-time error

Different version of algorithm
Still returns correct results

Performance suffers
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Still returns correct results

Performance suffers

Uses tempdb to store data that doesn’t fit in memory
This data is then read back and processed later

Called “spilling” to tempdb

Indicated in execution plan plus run-time statistics



Hash Match

Memory
Hash table stored in memory
Memory Grant
What if the build input is larger than the available memory?

 Fail with run-time error

Different version of algorithm
Still returns correct results

Performance suffers

Uses tempdb to store data that doesn’t fit in memory
This data is then read back and processed later

Called “spilling” to tempdb

Indicated in execution plan plus run-time statistics, Extended Events, and SQL Trace



Hash Match

Hash spill in detail
Can only occur during the build phase

Build row read, but no memory available to store it
Algorithm changes from “in-memory hash join” to “dynamic hash join” or “grace hash join”



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Hash table divided into several partitions
Partition number determined by hashing the bucket number

One “active” partition remains in memory
(For grace hash join, zero partitions remain in memory)

All inactive partitions spill to tempdb
Data already in hash table moved to “files” in tempdb

Rest of build phase stores data in memory or in appropriate file

End of build phase: active partition in memory, rest in files



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Build phase: Active partition in memory, inactive partitions in tempdb files

Probe phase:
Rows in active partition can be regularly processed

Rows in inactive partitions stored in yet more tempdb files

This finds matches and non-matches for active partition only
Execute final phase (if needed) to complete final results for active partition

No results at all for inactive partitions

But build and probe data for these partitions is now in separate files in tempdb



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Build phase: Active partition in memory, inactive partitions in tempdb files

Probe phase: Results for active partition, inactive partitions in tempdb files

Process inactive partitions
Make active

Read build file, store data in hash table

Read probe file, handle matches and non-matches as they are found

Execute final phase (if needed)

Repeat for each inactive partition



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join

Multiple iterations of build, probe, and final phase

First iteration
Reads build input, stores in memory or in tempdb

Reads probe input, produces partial results or stores in tempdb

Later iterations
Reads build data from tempdb, stores in memory

Reads probe data from tempdb, produces partial results



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join

Initial partitions too large

Partitions are split into new, smaller partitions



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out

When recursive hash join fails

Merge Join or Nested Loops for only those partition(s)
Input from files in tempdb



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out
Bit-vector filtering

Probe rows that match empty bucket are handled immediately

This reduces size of probe files for inactive partitions



Hash Match

Hash spill in detail
Dynamic hash join / grace hash join
Recursive hash join
Bail-out
Bit-vector filtering
Dynamic role reversal

Partitions that start inactive

Reverse build and probe if probe file has less rows



Hash Match

Hash spill
Data split into multiple partitions
Data for partitions written to tempdb
Partitions processed one by one

Output
Start with first partition

(may be mixed with some unmatched probe rows)

Then second partition, etc
Effectively (semi) random



Hash Match

Multiple Hash Match operators in a single execution plan
Reusing memory
Hash teams
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Hash Match
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Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

100 %28 %72 %31 %57 %

12 % 28 %



Hash Match

Multiple memory using operators in a single execution plan
Reusing memory

Memory Fractions Input

Memory Fractions Output



Hash Match

Multiple memory using operators in a single execution plan
Reusing memory
Hash teams

Directly adjacent Hash match operators

Using the same hash keys

Team manager
Mapping of values to buckets

Mapping of buckets to partitions

Memory management

Decisions to spill
Entire team spills at once



Summary

Hash Match (advanced)
Logic for all supported join types
Hash spills

Effect on order

Memory fractions
Hash teams



Next chapters
Chapter 4: Adaptive Join (advanced)

Logic for all supported join types

Spills
Considerations for choosing Adaptive Join
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